К новостям

"Северсталь" управляет окомкованием окатышей с помощью машинного обучения

06.12.2023

"Карельский окатыш" (входит в "Северсталь") внедрил комплекс моделей машинного обучения на линии окомкования окатышей. Система автоматически управляет скоростью вращения окомкователя и дозировкой бентонита и выдает рекомендации по дозировке железорудного концентрата, что позволяет повысить производительность агрегата с сохранением качества продукции. Решение разработала команда экспертов "Карельского окатыша" и ИТ-функция "Северстали".

Наиболее эффективный обжиг возможен тогда, когда в обжиговой машине преобладает доля окатышей класса 10-12,5 мм: так обеспечивается оптимальная пористость и газопроницаемость слоя при термообработке, что приводит к улучшению качества готовой продукции. Ранее у операторов не было индикатора, который мог бы точно определить эту долю: замеры проводились визуально, выборочно и в ручном режиме на основе лабораторных проб.

Теперь на основе анализа изображений с камер с высоким разрешением модель компьютерного зрения высчитывает гранулометрический состав сырых окатышей и предсказывает долю нужных классов. В зависимости от этого показателя регулируется скорость вращения окомкователя и дозировка бентонита и концентрата. Решение дает возможность не только контролировать процесс окомкования и управлять им, но и стандартизировать работу обжиговой машины.

В результате использования модели производительность линии окомкования повысилась на 11% с сохранением качества продукции.

"В 2018 г. на "Карельском окатыше" был подобный проект, но без использования нейронной сети. Сейчас у нас достоверность определения грансостава на порядок выше, чем была тогда. Нейронная сеть более точно определяет контур и размеры окатышей, в том числе те, которые скрывает первый слой. Система позволяет вести непрерывный мониторинг в потоке, что обеспечивает автоматическое и оперативное принятие решения в системе управления линией окомкования", - сказал начальник управления цифровых технологий центра развития бизнес-системы железорудных активов "Северстали" Владимир Люшенко.

"Процесс окомкования очень сложный, и необходимо учитывать много факторов для создания модели адаптивного управления. Решение стало уникальным для комбината симбиозом физического моделирования, алгоритмов машинного обучения и компьютерного зрения. При обучении модели использовались специальные регуляризаторы, которые помогли в шумных данных выявить правильные физические зависимости. Кроме того, она непрерывно уточняется и корректируется в онлайн-режиме на основе данных, поступающих в режиме реального времени", - отметила директор "Северсталь диджитал" Светлана Потапова, руководитель кластера "Искусственный интеллект" "Северстали".

"Северсталь" управляет окомкованием окатышей с помощью машинного обучения

06.12.2023